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Recap

|_1 * Vector spaces, linear dependence / independence, span, basis, Steinitz
Exchange Principle, dimension of vector space

L2 * Lagrange interpolation

e Secret sharing

* Linear transformations

» LT uniquely determined by action on a basis. Connection to matrices.

» Kernel (nullspace) and image. Rank-nullity theorem.



Definition of Eigenvectors and Eigenvalues

Definition 1.1 Let V be a vector space over the field IF and let ¢ : V' — V be a linear transforma-
tion. A € F is said to be an eigenvalue of ¢ if there exists v € V \ {0y} such that ¢(v) = A - v.
Such a vector v is called an eigenvector corresponding to the eigenvalue A. The set of eigenvalues
of ¢ is called its spectrum:

spec(@) = {A | A is an eigenvalue of ¢} .

Simple example: what are eigenvectors and eigenvalues of @, for A = [(2) (3)]?

07. . .
] IS an eigenvector of eigenvalue 3.

[(1)] is an eigenvector of eigenvalue 2, [1



Definition of Eigenvectors and Eigenvalues

Definition 1.1 Let V be a vector space over the field IF and let ¢ : V' — V be a linear transforma-
tion. A € F is said to be an eigenvalue of ¢ if there exists v € V \ {0y} such that ¢(v) = A - v.

Such a vector v is called an eigenvector corresponding to the eigenvalue A. The set of eigenvalues
of ¢ is called its spectrum:

spec(@) = {A | A is an eigenvalue of ¢} .

Another example: differentiation is a linear transformation on the class of infinitely-

differentiable real-valued functions. Each function of the form ce?* is an eigenvector
of eigenvalue A.

So, spec(¢p) = R.



Definition of Eigenvectors and Eigenvalues

Definition 1.1 Let V be a vector space over the field IF and let ¢ : V' — V be a linear transforma-
tion. A € F is said to be an eigenvalue of ¢ if there exists v € V \ {0y} such that ¢(v) = A - v.
Such a vector v is called an eigenvector corresponding to the eigenvalue A. The set of eigenvalues

of ¢ is called its spectrum:
spec(@) = {A | A is an eigenvalue of ¢} .
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Can also have no eigenvectors/eigenvalues, such as for a rotation matrix [




Set of eigenvectors of }

|mporta nt PrOper'UeS eigenvalue 1

Proposition 1.4 Let Uy = {v € V | ¢(v) = A - v}. Then for each A € [F, U, is a subspace of V.

Note that U, = {0y} if A is not an eigenvalue. The dimension of this subspace is called
the geometric multiplicity of the eigenvalue A.

Why subspace?

If v, v, € Uy then a,v; + a,v, € Uy, because

p(av1 +ayvy) = a19(v1) + a0 (V) = Aav, + azv,).



Important Properties

Proposition 1.5 Let Ay, ..., Ay bedistinct eigenvalues of @ with associated eigenvectors vy, . . ., Uk.
Then the set {vy,..., vy} is linearly independent.

So, eigenvectors of the same eigenvalue form a subspace, and eigenvectors with
different eigenvalues are linearly independent.



Important Properties

Proposition 1.5 Let Ay, ..., Ay bedistinct eigenvalues of @ with associated eigenvectors vy, . . ., Uk.
Then the set {vy,..., vy} is linearly independent.

Proof: @ We can prove by induction on k (base case of k = 1 is immediate). Assume
true for k — 1 and suppose it was not true for k. Then one of the vectors, say vy could be
written as a linear combination of the others: v, = a101 + ... + a;_1v,_1 where the a; are
not all 0. Applying ¢ we get Aoy = Aaio1 + ... + Ap_1a45-10¢—1. But now re-writing the
left-hand-side in terms of vy, ..., v;_; and re-grouping, we get (A, — Aq)ajv1 + ... + (A —
Ap_1)ar_17_1 = 0. Since the A’s are all distinct, this is a nonzero linear combination
summing to 0, which contradicts our inductive assumption. u

Definition 1.6 A transformation ¢ : V — V is said to be diagonalizable if there exists a basis of
V' comprising of eigenvectors of ¢. (E.g., if V has dimension n, and ¢ has n distinct eigenvalues)

(But distinctness not required. E.g., Identity transformation) s



Inner Products

Definition 2.1 Let V be a vector space over a field IF (which is taken to be R or C). A function
u:V xV — Fisan inner product if

- The function u(u,-) : V. — [ is a linear transformation for every u € V. So, u(u,cv) =
cu(u,v)and u(u, v+ w) = p(u,v) + pu(u, w).

- The function satisfies u(u,v) = u(v, u). (Complex conjugate)
- u(v,v) € Repforallv € Vand is 0 only for v = Ov. This is called positive semidefiniteness.
We write the inner product corresponding to u as (u,v). Define ||v|| = /(v, V)

If over R, then u is symmetric, so u(cu, v) = cu(u, v). Over C, get u(cu,v) = cu(u, v).

(some definitions do it the other way around, with u(:, v) as a linear transformation)

Either way, you also get u(u; + u,, v) = u(uq, v) + u(u,, v).



Inner Products

Definition 2.1 Let V be a vector space over a field IF (which is taken to be R or C). A function
u:V xV — Fisan inner product if

- The function u(u,-) : V. — [ is a linear transformation for every u € V. So, u(u,cv) =
cu(u,v)and u(u, v+ w) = p(u,v) + pu(u, w).

- The function satisfies u(u,v) = u(v, u). (Complex conjugate)

- u(v,v) € Repforallv € Vand is 0 only for v = Ov. This is called positive semidefiniteness.
We write the inner product corresponding to u as (u,v). Define ||v|| = \/(Tv)
If over R, then u is symmetric, so u(cu, v) = cu(u, v). Over C, get u(cu,v) = cu(u, v).
What about u(cu, cv)? Get ccu(u,v) = |c|?u(u, v).

(a + bi)(a — bi) = a? + b*
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Inner Products Examples

* (f,g) = f_llf(x)g(x)dx is an inner product over the vector space of continuous
functions from [-1,1] to R.

* Forx,y € R?%, {(x,y) = x;y; + x,V, is the usual inner product. But {(x,y) = 2x;y; +
x>y, + X1Y2/2 + x,y1/2 also defines an inner product.

> (x,cy) = c{x,y).
» Fory =u+v,get(x,y) =(x,u)+ (x,v).

2
. 1 1
>(x,x) = 0, since 2x% + x% + x,x, = lez + x5 + x1X, = (Exl + xz) > 0.



Important Properties

Proposition 3.1 (Cauchy-Schwartz): for any two vectors u, v € I/,
[(u, v)I? < (u,u) - (v, v)

Or equivalently,

where ||u|| = +/{u, u).

Proof 1 (case of V = R94):

* The left-hand-side is the length of v times
the length of the projection of u onto v.

[(w, v)| < |lull - vl

 Since orthogonal projection can’t increase
length, this is < right-hand-side.

12



Important Properties

Proposition 3.1 (Cauchy-Schwartz): for any two vectors u, v € I/,
[(u, v)I? < (u,u) - (v, v)

Or equivalently,

where ||u|| = +/{u, u).

And is a real
number
Proof 2 (general case):

* If v = Oy then trivial, so can assume v # 0y, and so (v, v) > 0.

[(w, v)| < |lull - vl

e Letw = au + bv. Get 0 < (w,w) = |a|?(u,u) + |b|?*(v,v) + ab{u,v) + ba(v,u).

* Seta = (v,v),b = —(u,v). Get (v,v)*(u,u) + |(u, v)|*(v, v) — 2|{u, v)|*(v, v).

o = (v, v)({(v,v{u,u) — |{u, v)|%). Since (v,v) > 0, the 2" term must be = 0.
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Important Properties

Exercise 3.2 Prove that for any inner product space V and any u,v,w € V

|u—w| < |u—2o||+|v—w|. (triangle inequality)
Proof:

* letx =u—v,y =v—w. Wanttoshow: ||x + y|l < |lx]| + [|l¥]|.

e Square both sides.

> LHS = (x,x) + (x, y) + (v, %) + (¥, ) < (x, %) + 2lIxllllyll + <y, vy = Al + [y ID?.
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Important Properties

Exercise 3.2 Prove that for any inner product space V and any u,v,w € V

|u—w| < |u—2o||+|v—w|. (triangle inequality)

This can be used to define convergence of sequences, and to define infinite sums and limits
of sequences (which was not possible in an abstract vector space). However, it might
still happen that the limit of a sequence of vectors in the vector space, which converges
according to the norm defined by the inner product, may not converge to a vector in the
space. Consider the following example.
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Important Properties

Example 3.3 Consider the vector space C([—1,1],R) of continuous functions from [—1,1] to R
with the inner product defined by (f, g) = f_ll f(x)g(x)dx. Consider the sequence of functions:

"

1 xe [13)
fn(-}:):< nx x € [=L l)

. n ' n

1 x e [41]

\ LM

One can check that || f,, — f,,||* = O 1) for m > n. Thus, the sequence converges. However,
the limit point is a discontinuous function not in the inner product space. To fix this prob-
lem, one can essentially include the limit points of all the sequences in the space (known
as the completion of the space). An inner product space in which all (Cauchy) sequences
converge to a point in the space is known as a Hilbert space. Many of the theorems we will
prove will generalize to Hilbert spaces though we will only prove some of them for finite
dimensional spaces.
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Reminder: hwk1l due Wednesday
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